skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "van_Schaik, André"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Neuromorphic computing, exemplified by breakthroughs in machine vision through concepts like address-event representation and send-on-delta sampling, has revolutionised sensor technology, enabling low-latency and high dynamic range perception with minimal bandwidth. While these advancements are prominent in vision and auditory perception, their potential in machine olfaction remains under-explored, particularly in the context of fast sensing. Here, we outline the perspectives for neuromorphic principles in machine olfaction. Considering the physical characteristics of turbulent odour environments, we argue that event-driven signal processing is optimally suited to the inherent properties of olfactory signals. We highlight the lack of bandwidth limitation due to turbulent dispersal processes, the characteristic temporal and chemical sparsity, as well as the high information density of the odour landscape. Further, we critically review and discuss the literature on neuromorphic olfaction; particularly focusing on neuromorphic principles such as event generation algorithms, information encoding mechanisms, event processing schemes (spiking neural networks), and learning. We discuss that the application of neuromorphic principles may significantly enhance response time and task performance in robotic olfaction, enabling autonomous systems to perform complex tasks in turbulent environments—such as environmental monitoring, odour guided search and rescue operations, and hazard detection. 
    more » « less
  2. Animals have evolved to rapidly detect and recognize brief and intermittent encounters with odor packages, exhibiting recognition capabilities within milliseconds. Artificial olfaction has faced challenges in achieving comparable results—existing solutions are either slow; or bulky, expensive, and power-intensive—limiting applicability in real-world scenarios for mobile robotics. Here, we introduce a miniaturized high-speed electronic nose, characterized by high-bandwidth sensor readouts, tightly controlled sensing parameters, and powerful algorithms. The system is evaluated on a high-fidelity odor delivery benchmark. We showcase successful classification of tens-of-millisecond odor pulses and demonstrate temporal pattern encoding of stimuli switching with up to 60 hertz. Those timescales are unprecedented in miniaturized low-power settings and demonstrably exceed the performance observed in mice. It is now possible to match the temporal resolution of animal olfaction in robotic systems. This will allow for addressing challenges in environmental and industrial monitoring, security, neuroscience, and beyond. 
    more » « less
    Free, publicly-accessible full text available November 8, 2025
  3. Abstract Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological advancements, compare performance with conventional methods, and identify promising future research directions. This article presents NeuroBench, a benchmark framework for neuromorphic algorithms and systems, which is collaboratively designed from an open community of researchers across industry and academia. NeuroBench introduces a common set of tools and systematic methodology for inclusive benchmark measurement, delivering an objective reference framework for quantifying neuromorphic approaches in both hardware-independent and hardware-dependent settings. For latest project updates, visit the project website (neurobench.ai). 
    more » « less
    Free, publicly-accessible full text available December 1, 2026